Fiche de révision

Vecteurs, droites et plans de l'espace

1. Repère de l'espace et coordonnées

- Repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$.
- Un point M a pour coordonnées $M(x_M, y_M, z_M)$.
- $\overrightarrow{AB} = (x_B x_A, y_B y_A, z_B z_A).$
- Un vecteur $\vec{u}(a,b,c)$ s'écrit $\vec{u} = a\vec{i} + b\vec{j} + c\vec{k}$.

2. Norme, distance, milieu

- Norme : $\|\vec{u}(a,b,c)\| = \sqrt{a^2 + b^2 + c^2}$.
- Distance $AB : AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$.
- Milieu : $I\left(\frac{x_A+x_B}{2}, \frac{y_A+y_B}{2}, \frac{z_A+z_B}{2}\right)$.

3. Vecteurs, translation, colinéarité

Translation

— La translation de vecteur \overrightarrow{AB} envoie M(x,y,z) sur M'(x+a,y+b,z+c) si $\overrightarrow{AB}=(a,b,c)$.

Colinéarité

— Deux vecteurs $\vec{u}(a,b,c)$ et $\vec{v}(a',b',c')$ sont colinéaires ssi $(a',b',c')=(\lambda a,\lambda b,\lambda c)$ pour un réel λ .

4. Coplanaires, indépendance, base

- Trois vecteurs sont coplanaires si l'un est combinaison linéaire des deux autres.
- Ils sont linéairement indépendants si $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$ implique $\alpha = \beta = \gamma = 0$.
- Base de l'espace : famille de 3 vecteurs linéairement indépendants, par exemple $(\vec{i}, \vec{j}, \vec{k})$.

5. Droites de l'espace

- Une droite d: point $A(x_A, y_A, z_A)$ et vecteur directeur $\vec{u}(a, b, c) \neq \vec{0}$.
- Représentation paramétrique :

$$d: \begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases} (t \in \mathbb{R}).$$

— Positions relatives de deux droites : parallèles, sécantes ou gauches (non coplanaires).

6. Plans

- Un plan \mathscr{P} : point A et vecteurs non colinéaires \vec{u}, \vec{v} , avec $\overrightarrow{AM} = \lambda \vec{u} + \mu \vec{v}$.
- Avec un vecteur normal $\vec{n}(a,b,c)$, une équation cartésienne de \mathscr{P} est ax + by + cz + d = 0.
- Deux plans : parallèles/confondus si leurs vecteurs normaux sont colinéaires, sinon sécants.