Vecteurs, droites et plans de l'espace

Exercices corriges

Exercice 1 - Colinearite et alignement

Dans le repere $(O; \vec{i}, \vec{j}, \vec{k})$, on considere A(1, 2, -1), B(3, -1, 2) et C(5, -4, 5).

- 1. Calculer \overrightarrow{AB} et \overrightarrow{AC} .
- 2. Montrer que A, B, C sont alignes.

Correction.

$$\overrightarrow{AB} = (2, -3, 3), \quad \overrightarrow{AC} = (4, -6, 6) = 2 \overrightarrow{AB}.$$

Les vecteurs sont colineaires non nuls, donc A, B, C sont alignes.

Exercice 2 - Appartenance a une droite

On considere la droite

$$d: \begin{cases} x = 1 + 2t \\ y = -1 + t \\ z = 3 - t \end{cases} (t \in \mathbb{R}).$$

- 1. Donner un point A de d.
- 2. Donner un vecteur directeur \vec{u} de d.
- 3. Verifier que M(3,1,1) n'appartient pas a d.

Correction.

Pour t = 0, $A(1, -1, 3) \in d$. Le vecteur directeur est $\vec{u}(2, 1, -1)$.

Pour M(3,1,1), on doit avoir

$$3 = 1 + 2t$$
, $1 = -1 + t$, $1 = 3 - t$.

Les solutions sont t=1, t=2 et t=2: pas de t commun, donc $M \notin d$.

Exercice 3 - Plan et equation cartesienne

Le plan \mathscr{P} a pour equation x - 2y + z + 1 = 0.

- 1. Donner un vecteur normal \vec{n} .
- 2. Verifier que A(1,0,-2) appartient a \mathscr{P} .
- 3. Verifier que B(2,1,1) n'appartient pas a \mathscr{P} .

Correction.

Un vecteur normal est $\vec{n}(1, -2, 1)$.

Pour A(1,0,-2):

$$1-2\times 0+(-2)+1=0$$
,

donc $A \in \mathscr{P}$.

Pour B(2, 1, 1):

$$2-2\times 1+1+1=2\neq 0$$
,

donc $B \notin \mathscr{P}$.

Exercice 4 - Deux plans paralleles ou non

Soit
$$\mathscr{P}: 2x + 3y - z - 1 = 0$$
 et $\mathscr{Q}: 4x + 6y - 2z + 3 = 0$.

- 1. Donner un vecteur normal a chacun des plans.
- 2. Determiner leur position relative.

Correction.

 $\mathscr{P}: \vec{n}_1(2,3,-1); \mathscr{Q}: \vec{n}_2(4,6,-2)=2\vec{n}_1.$ Donc plans paralleles ou confondus. On teste un point de \mathscr{P} , par exemple M(1,0,1):

$$2 \times 1 + 3 \times 0 - 1 - 1 = 0 \Rightarrow M \in \mathscr{P}$$
.

Pour \mathcal{Q} :

$$4\times 1 + 6\times 0 - 2\times 1 + 3 = 5 \neq 0 \Rightarrow M\notin \mathscr{Q}.$$

Donc les plans sont strictement paralleles.

Exercice 5 - Coplanarite et base

On considere

$$\vec{u}(1,0,1), \quad \vec{v}(0,1,1), \quad \vec{w}(1,1,0).$$

- 1. Montrer que \vec{u} et \vec{v} ne sont pas colineaires.
- 2. Montrer que \vec{w} n'est pas combinaison lineaire de \vec{u} et \vec{v} .
- 3. En deduire que $(\vec{u}, \vec{v}, \vec{w})$ est une base de l'espace.

Correction.

- $\vec{u}(1,0,1)$ et $\vec{v}(0,1,1)$ n'ont pas de rapport constant entre leurs coordonnees, donc ils ne sont pas colineaires.
- Supposons $\vec{w} = \alpha \vec{u} + \beta \vec{v}$, alors

$$(1,1,0) = (\alpha, \beta, \alpha + \beta).$$

On obtient

$$\alpha = 1, \ \beta = 1, \ \alpha + \beta = 0 \Rightarrow 2 = 0,$$

impossible. Donc \vec{w} n'est pas combinaison de \vec{u}, \vec{v} .

— Il n'existe pas de relation lineaire non triviale entre $\vec{u}, \vec{v}, \vec{w}$: ils sont lineairement independants et forment une base de l'espace.