Vecteurs, droites et plans de l'espace

Specialite mathematiques - Terminale

1 Repere de l'espace et vecteurs

1.1 Repere orthonorme de l'espace

On travaille dans un espace muni d'un **repere orthonorme** $(O; \vec{i}, \vec{j}, \vec{k})$. Chaque point M est repere par ses **coordonnees** (x_M, y_M, z_M) .

Definition.

Soit $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ deux points de l'espace. Le vecteur \overrightarrow{AB} a pour coordonnees

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A, z_B - z_A).$$

Un vecteur quelconque \vec{u} de coordonnees (a, b, c) s'ecrit

$$\vec{u} = a\vec{i} + b\vec{j} + c\vec{k}.$$

Propriete. Norme d'un vecteur

Dans un repere orthonorme, si $\vec{u}(a,b,c)$, alors la **norme** de \vec{u} est

$$\|\vec{u}\| = \sqrt{a^2 + b^2 + c^2}.$$

Pour deux points $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$, la distance AB vaut

$$AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}.$$

Exemple.

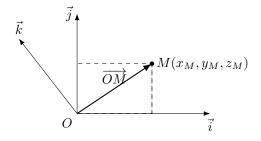
Dans le repere usuel, soit A(1,2,0) et B(3,-1,4). Alors

$$\overrightarrow{AB} = (3-1, \, -1-2, \, 4-0) = (2, -3, 4)$$

 et

$$AB = \sqrt{2^2 + (-3)^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29}.$$

Figure 1 : repere de l'espace et vecteur



2 Vecteurs, translation et familles de vecteurs

2.1 Operations et colinearite

Propriete.

Soient $\vec{u}(a,b,c)$ et $\vec{v}(a',b',c')$ deux vecteurs de l'espace et $\lambda \in \mathbb{R}$.

- Somme : $\vec{u} + \vec{v} = (a + a', b + b', c + c')$.
- Oppose : $-\vec{u} = (-a, -b, -c)$.

— Produit par un reel : $\lambda \vec{u} = (\lambda a, \lambda b, \lambda c)$.

Definition. Colinearite

Deux vecteurs non nuls $\vec{u}(a,b,c)$ et $\vec{v}(a',b',c')$ sont colineaires s'il existe un reel λ tel que

$$(a', b', c') = (\lambda a, \lambda b, \lambda c).$$

Exemple.

Les vecteurs $\vec{u}(2, -4, 6)$ et $\vec{v}(-1, 2, -3)$ sont colineaires car $\vec{u} = -2\vec{v}$.

2.2 Vecteur comme translation

Definition. Translation

La translation qui envoie A sur B est le deplacement qui transforme tout point M en M' tel que

$$\overrightarrow{AM} = \overrightarrow{BM'}$$
.

Le vecteur de cette translation est \overrightarrow{AB} . Deux vecteurs sont egaux s'ils representent la meme translation (meme direction, meme sens, meme longueur).

Exemple.

Si la translation de vecteur $\vec{u}(1, -2, 3)$ envoie A(0, 1, 2) sur B(1, -1, 5), alors tout point M(x, y, z) est envoye sur

$$M'(x+1, y-2, z+3).$$

2.3 Vecteurs coplanaires

Definition. Coplanaires

Trois vecteurs $\vec{u}, \vec{v}, \vec{w}$ sont **coplanaires** s'ils sont contenus dans un meme plan, c'est-a-dire si l'un est combinaison lineaire des deux autres.

Dans \mathbb{R}^3 , par exemple, si

$$\vec{w} = \alpha \vec{u} + \beta \vec{v},$$

alors $\vec{u}, \vec{v}, \vec{w}$ sont coplanaires.

Exemple.

Les vecteurs

$$\vec{u}(1,0,1), \quad \vec{v}(0,1,1), \quad \vec{w}(1,1,2)$$

sont coplanaires car $\vec{w} = \vec{u} + \vec{v}$.

2.4 Vecteurs lineairement independents et base

Definition. Dependance lineaire

Trois vecteurs \vec{v} , \vec{v} , \vec{w} sont lineairement dependants s'il existe des reels α , β , γ , non tous nuls, tels que

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}.$$

Ils sont lineairement independants si

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \Rightarrow \alpha = \beta = \gamma = 0.$$

Definition. Base de l'espace

Dans \mathbb{R}^3 , une famille de trois vecteurs $(\vec{u}, \vec{v}, \vec{w})$ lineairement independants est une **base de l'espace**. Tout vecteur s'ecrit de maniere unique comme combinaison lineaire de $\vec{u}, \vec{v}, \vec{w}$.

Exemple.

Les vecteurs

$$\vec{i}(1,0,0), \quad \vec{j}(0,1,0), \quad \vec{k}(0,0,1)$$

sont lineairement independants. Tout vecteur $\vec{u}(a,b,c)$ se decompo se comme

$$\vec{u} = a\vec{i} + b\vec{j} + c\vec{k}.$$

3 Droites de l'espace

3.1 Representation parametrique

Definition.

Une droite d est definie par

- un point $A(x_A, y_A, z_A)$,
- un vecteur directeur non nul $\vec{u}(a,b,c)$.

On a alors

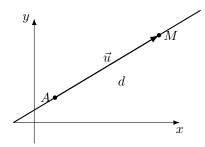
$$d: \begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases} (t \in \mathbb{R}).$$

Exemple.

La droite passant par A(1,0,2) de vecteur directeur $\vec{u}(3,-1,4)$:

$$d: \begin{cases} x = 1 + 3t \\ y = 0 - t \\ z = 2 + 4t \end{cases} \quad (t \in \mathbb{R}).$$

Figure 2: droite passant par un point



3.2 Positions relatives de deux droites

Propriete.

Dans l'espace, deux droites d_1 et d_2 peuvent etre :

- **secantes** : un point commun.
- **paralleles**: vecteurs directeurs colineaires, aucun point commun (ou confondues si tous les points sont communs).
- gauches (non coplanaires): ni secantes ni paralleles.

4 Plans de l'espace

4.1 Plan par un point et deux vecteurs

Definition.

Un plan ${\mathcal P}$ peut etre defini par :

- un point $A(x_A, y_A, z_A)$,
- deux vecteurs non colineaires $\vec{u}(a,b,c)$, $\vec{v}(a',b',c')$.

Tout point M(x,y,z) de ${\mathscr P}$ verifie

$$\overrightarrow{AM} = \lambda \vec{u} + \mu \vec{v} \quad (\lambda, \mu \in \mathbb{R}).$$

4.2 Vecteur normal et equation cartesienne

Definition.

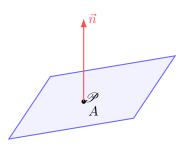
Un vecteur $\vec{n}(a,b,c)$ est **normal** au plan \mathscr{P} s'il est orthogonal a tout vecteur du plan. On peut alors ecrire une equation cartesienne

$$ax + by + cz + d = 0.$$

Exemple.

Le plan d'equation 2x - y + 3z - 5 = 0 a pour vecteur normal $\vec{n}(2, -1, 3)$.

Figure 3: plan et vecteur normal



5 Positions relatives : droite/plan, plan/plan

Propriete. Droite et plan

Soit une droite d de vecteur directeur \vec{u} et un plan \mathscr{P} de vecteur normal \vec{n} .

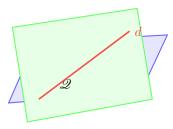
- Si \vec{u} est orthogonal a \vec{n} , alors d est parallele (ou contenue) au plan \mathscr{P} .
- Sinon, d est secante au plan \mathscr{P} .

Propriete. Deux plans

Deux plans $\mathcal P$ et $\mathcal Q$ de vecteurs normaux $\vec n_1$ et $\vec n_2$ sont :

- paralleles ou confondus si \vec{n}_1 et \vec{n}_2 sont colineaires;
- secants (intersection : une droite) sinon.

Figure 4: deux plans secants



4