Fiche de révision

Suites numériques et récurrence

1. Définitions et notations

- Suite numérique : $(u_n)_{n\in\mathbb{N}}$, $u:\mathbb{N}\to\mathbb{R}$.
- Définition explicite : $u_n = f(n)$.
- Définition par récurrence : u_0 donné et $u_{n+1} = g(u_n)$ (ou $g(n, u_n)$).

2. Suites arithmétiques

- $u_{n+1} = u_n + r \text{ (raison } r).$
- Formule explicite : $u_n = u_0 + nr$.
- Somme des n+1 premiers termes :

$$S_n = u_0 + u_1 + \dots + u_n = \frac{n+1}{2}(u_0 + u_n).$$

3. Suites géométriques

- $-v_{n+1} = q v_n$ (raison $q \neq 0$).
- Formule explicite : $v_n = v_0 q^n$.
- Somme:

$$S_n = v_0 + v_1 + \dots + v_n = v_0 \frac{1 - q^{n+1}}{1 - q} \quad (q \neq 1).$$

4. Variations et encadrement

- Croissante : $u_{n+1} \ge u_n$ pour tout n.
- Décroissante : $u_{n+1} \le u_n$ pour tout n.
- Majorée : $\exists M$ tel que $u_n \leq M$.
- Minorée : $\exists m$ tel que $u_n \geq m$.
- Bornée : à la fois majorée et minorée.
- Critère par les différences :

$$u_{n+1} - u_n \ge 0 \Rightarrow (u_n)$$
 croissante.

5. Limites et convergence

- (u_n) converge vers ℓ si $u_n \to \ell$ quand $n \to +\infty$.
- Suites divergentes : $u_n \to +\infty$ ou $-\infty$.
- Théorème : une suite croissante et majorée, ou décroissante et minorée, est convergente.

6. Récurrence

- Principe:
 - Initialisation : montrer $P(n_0)$.
 - Hérédité : $P(k) \Rightarrow P(k+1)$ pour tout $k \ge n_0$.
- Exemples classiques :

$$1+2+\cdots+n=\frac{n(n+1)}{2}, \quad (1+a)^n \ge 1+na \ (a \ge -1).$$

7. Suites linéaires $u_{n+1} = au_n + b$

— On cherche une limite ℓ vérifiant $\ell = a\ell + b$, soit

$$\ell = \frac{b}{1-a} \quad (a \neq 1).$$

- On pose $v_n = u_n \ell$: alors $v_{n+1} = av_n$, donc $v_n = a^n v_0$.
- Formule :

$$u_n = a^n(u_0 - \ell) + \ell.$$

Si |a| < 1, alors $u_n \to \ell$.

8. Suites $u_{n+1} = g(u_n)$

- Chercher un point fixe : $\ell = g(\ell)$.
- Montrer que la suite reste dans un intervalle stable et qu'elle est monotone.
- Conclure à la convergence (théorème monotone) et à la limite $\ell.$