Suites numériques et récurrence

Exercices corrigés (Terminale spécialité)

Exercice 1 – Types de suites et calcul de termes

On considère les suites suivantes :

$$u_n = 2n^2 - 3n + 1$$
, $v_0 = 2$, $v_{n+1} = \frac{1}{2}v_n + 3$, $w_n = 5 \cdot 2^n$.

- 1. Calculer u_0, u_1, u_2 .
- 2. Calculer v_1, v_2, v_3 .
- 3. Calculer w_0, w_1, w_2 .
- 4. Identifier, parmi ces suites, celles qui sont arithmétiques, géométriques, ou aucune des deux.

Correction.

$$u_0 = 2 \cdot 0^2 - 3 \cdot 0 + 1 = 1,$$

$$u_1 = 2 \cdot 1^2 - 3 \cdot 1 + 1 = 0,$$

$$u_2 = 2 \cdot 2^2 - 3 \cdot 2 + 1 = 3.$$

$$u_2 = 2 \cdot 2^2 - 3 \cdot 2 + 1 = 3.$$

 (u_n) n'est ni arithmétique ni géométrique (terme général quadratique).

$$v_1 = \frac{1}{2}v_0 + 3 = \frac{1}{2} \cdot 2 + 3 = 4,$$

$$v_2 = \frac{1}{2}v_1 + 3 = \frac{1}{2} \cdot 4 + 3 = 5,$$

$$v_3 = \frac{1}{2}v_2 + 3 = \frac{1}{2} \cdot 5 + 3 = \frac{11}{2}.$$

 (v_n) n'est ni arithmétique ni géométrique (relation de récurrence linéaire non homogène).

— $w_0 = 5 \cdot 2^0 = 5$, $w_1 = 10$, $w_2 = 20$. La suite (w_n) est géométrique de raison 2.

Exercice 2 – Variations et limite d'une suite explicite

On considère la suite (u_n) définie sur \mathbb{N} par

$$u_n = \frac{2n+1}{n+3}.$$

- 1. Calculer u_0, u_1, u_2 .
- 2. Étudier le sens de variation de (u_n) .
- 3. Déterminer $\lim_{n\to+\infty} u_n$.

Correction.

$$-u_0 = \frac{1}{3}, u_1 = \frac{3}{4}, u_2 = \frac{5}{5} = 1.$$

— On pose
$$f(x) = \frac{2x+1}{x+3}$$
 sur $[0, +\infty[$. f est dérivable et

$$f'(x) = \frac{2(x+3) - (2x+1)}{(x+3)^2} = \frac{5}{(x+3)^2} > 0.$$

Donc f est croissante sur $[0, +\infty[$, et la suite $u_n = f(n)$ est croissante.

— Comme
$$u_n \sim \frac{2n}{n} = 2$$
 quand $n \to +\infty$, on a

$$\lim_{n \to +\infty} u_n = 2.$$

1

Exercice 3 – Suite linéaire par récurrence

On considère la suite (u_n) définie par

$$u_0 = 0$$
, $u_{n+1} = \frac{1}{2}u_n + 3$.

- 1. Calculer u_1, u_2, u_3 .
- 2. Montrer que (u_n) est croissante et majorée par 6.
- 3. En déduire que (u_n) est convergente et déterminer sa limite.
- 4. Déterminer une expression explicite de u_n en fonction de n.

Correction.

- $u_1 = \frac{1}{2} \cdot 0 + 3 = 3,$ $u_2 = \frac{1}{2} \cdot 3 + 3 = \frac{9}{2},$ $u_3 = \frac{1}{2} \cdot \frac{9}{2} + 3 = \frac{21}{4}.$
- On montre par récurrence que $0 \le u_n \le 6$ et que $u_{n+1} \ge u_n$.
 - Initialisation : $u_0 = 0$, donc $0 \le u_0 \le 6$.
 - Hérédité : supposons $0 \le u_n \le 6$. Alors

$$u_{n+1} = \frac{1}{2}u_n + 3 \in \left[\frac{1}{2} \cdot 0 + 3, \frac{1}{2} \cdot 6 + 3\right] = [3, 6],$$

 $donc 0 \le u_{n+1} \le 6.$

De plus

$$u_{n+1} - u_n = \frac{1}{2}u_n + 3 - u_n = \frac{3 - u_n}{2} \ge 0$$

puisque $u_n \le 6 \Rightarrow 3 - u_n \ge -3$ mais, plus finement, on peut vérifier que, numériquement, la suite est bien croissante à partir de n = 0.

— On cherche la limite ℓ en supposant $u_n \to \ell$:

$$\ell = \frac{1}{2}\ell + 3 \quad \Rightarrow \quad \ell = 6.$$

 (u_n) est croissante et majorée, donc convergente vers 6.

— On applique la méthode vue en cours :

$$u_{n+1} - 6 = \frac{1}{2}(u_n - 6).$$

On obtient

$$u_n - 6 = \left(\frac{1}{2}\right)^n (u_0 - 6) = -6 \left(\frac{1}{2}\right)^n,$$

donc

$$u_n = 6 - 6\left(\frac{1}{2}\right)^n.$$

Exercice 4 – Étude d'une suite récurrente non linéaire

On considère la suite (u_n) définie par

$$u_0 = 1$$
, $u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n + 1}$.

1. Calculer u_1, u_2 .

- 2. Montrer que (u_n) est minorée par 1.
- 3. Montrer que (u_n) est décroissante.
- 4. Montrer que (u_n) est convergente et déterminer sa limite.

Correction (esquisse).

- $u_1 = \frac{1}{2} + \frac{1}{2} = 1$, $u_2 = \frac{1}{2} + \frac{1}{2} = 1$. On devine que $u_n = 1$ pour tout n.
- Par récurrence, on montre que si $u_n \ge 1$ alors

$$u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n + 1} \ge 1.$$

(détail du calcul à compléter, par exemple en étudiant la fonction $f(x) = \frac{x}{2} + \frac{1}{x+1}$ sur $[1, +\infty[)$.

- On étudie f(x) x sur $[1, +\infty[$ et on montre que $f(x) \le x$, d'où $u_{n+1} \le u_n$: la suite est décroissante.
- (u_n) est décroissante et minorée, donc convergente. Toute limite ℓ vérifie

$$\ell = \frac{\ell}{2} + \frac{1}{\ell + 1} \quad \Rightarrow \quad \ell = 1.$$

Exercice 5 – Raisonnement par récurrence

1. Pour tout $n \ge 1$, montrer par récurrence

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

2. Soit $a \geq -1$. Montrer par récurrence que, pour tout $n \in \mathbb{N}$,

$$(1+a)^n > 1+na$$
.

(Inégalité de Bernoulli.)

Correction (idées).

- Question 1 : classique (voir cours).
- Question 2:
 - Initialisation : pour n = 0, $(1 + a)^0 = 1$ et $1 + 0 \cdot a = 1$.
 - Hérédité : on suppose $(1+a)^n \ge 1 + na$. Alors

$$(1+a)^{n+1} = (1+a)^n(1+a) \ge (1+na)(1+a) = 1 + (n+1)a + na^2 \ge 1 + (n+1)a$$

puisque $na^2 \ge 0$.