Suites numériques et récurrence

Spécialité mathématiques – Terminale

1 Généralités sur les suites

Définition.

Une suite numérique est une application

$$u: \mathbb{N} \longrightarrow \mathbb{R}, \quad n \longmapsto u_n.$$

On note la suite $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Le nombre u_n est le n-ième terme de la suite.

Exemple.

- $u_n = 2n^2 3n + 1$ pour tout $n \in \mathbb{N}$.
- $v_0 = 2$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = \frac{1}{2}v_n + 3$.

Définition. Deux façons de définir une suite

— Définition explicite (ou fonctionnelle) : il existe une fonction f telle que, pour tout n de son domaine,

$$u_n = f(n)$$
.

Exemple: $u_n = 3n - 1$.

— Définition par récurrence (ou relation de récurrence) : on donne u_0 (ou u_1) et une relation du type

$$u_{n+1} = g(u_n)$$
 ou $u_{n+1} = g(n, u_n)$.

Exemple: $u_0 = 1$ et pour tout n, $u_{n+1} = 2u_n + 1$.

2 Suites arithmétiques et géométriques

Définition. Suite arithmétique

Une suite (u_n) est **arithmétique** s'il existe un réel r tel que, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n + r.$$

On dit que r est la **raison** de la suite.

Propriété.

Si (u_n) est arithmétique de premier terme u_0 et de raison r, alors pour tout $n \in \mathbb{N}$,

$$u_n = u_0 + nr$$
.

Pour tout $n \geq 1$, la somme partielle

$$S_n = u_0 + u_1 + \dots + u_n$$

vaut

$$S_n = \frac{n+1}{2}(u_0 + u_n).$$

Définition. Suite géométrique

Une suite (v_n) est **géométrique** s'il existe un réel $q \neq 0$ tel que, pour tout $n \in \mathbb{N}$,

$$v_{n+1} = q v_n$$
.

On dit que q est la **raison** de la suite.

Propriété.

Si (v_n) est géométrique de premier terme v_0 et de raison q, alors pour tout $n \in \mathbb{N}$,

$$v_n = v_0 q^n$$
.

Pour tout $n \ge 0$, la somme partielle

$$S_n = v_0 + v_1 + \dots + v_n$$

vaut, si $q \neq 1$,

$$S_n = v_0 \, \frac{1 - q^{n+1}}{1 - q}.$$

3 Variations, majoration et convergence d'une suite

Définition.

Soit (u_n) une suite réelle.

- (u_n) est **croissante** si, pour tout $n \in \mathbb{N}$, $u_{n+1} \geq u_n$.
- (u_n) est **décroissante** si, pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$.
- (u_n) est **monotone** si elle est croissante ou décroissante.

Définition.

- (u_n) est **majorée** s'il existe $M \in \mathbb{R}$ tel que, pour tout $n, u_n \leq M$.
- (u_n) est **minorée** s'il existe $m \in \mathbb{R}$ tel que, pour tout $n, u_n \geq m$.
- (u_n) est **bornée** si elle est à la fois majorée et minorée.

Propriété. Critère de variations par les différences

Soit (u_n) une suite. Pour tout n, on considère la différence $u_{n+1} - u_n$.

- Si $u_{n+1} u_n \ge 0$ pour tout n, alors (u_n) est croissante.
- Si $u_{n+1} u_n \leq 0$ pour tout n, alors (u_n) est décroissante.

Propriété. Lien avec une fonction

Soit (u_n) une suite définie par $u_n = f(n)$ où f est une fonction dérivable sur $[0, +\infty[$.

- Si $f'(x) \ge 0$ pour tout $x \ge 0$, alors (u_n) est croissante.
- Si $f'(x) \leq 0$ pour tout $x \geq 0$, alors (u_n) est décroissante.

Définition. Limite

On dit que (u_n) converge vers un réel ℓ et on écrit $\lim_{n\to+\infty} u_n = \ell$ si les termes de la suite se rapprochent autant qu'on veut de ℓ quand n devient très grand.

On dit que (u_n) tend vers $+\infty$ si ses termes deviennent arbitrairement grands, et vers $-\infty$ s'ils deviennent arbitrairement petits.

Propriété. Théorème de la convergence monotone

Toute suite croissante et majorée est convergente. Toute suite décroissante et minorée est convergente.

Exemple.

La suite $u_n = \frac{2n+1}{n+3}$ est définie sur \mathbb{N} .

On pose $f(x) = \frac{2x+1}{x+3}$ sur $[0,+\infty[$. On a

$$f'(x) = \frac{2(x+3) - (2x+1)}{(x+3)^2} = \frac{5}{(x+3)^2} > 0,$$

donc f est croissante, donc (u_n) est croissante. De plus, $u_n \to 2$ lorsque $n \to +\infty$, donc (u_n) est convergente de limite 2.

4 Principe de récurrence

Définition.

Soit P(n) une propriété dépendant d'un entier $n \in \mathbb{N}$. Le **principe de récurrence** affirme que, si :

- **Initialisation** : $P(n_0)$ est vraie pour un certain entier n_0 ;
- **Hérédité**: pour tout entier $k \ge n_0$, P(k) vraie implique P(k+1) vraie;

alors P(n) est vraie pour tout entier $n \geq n_0$.

Exemple. Somme des n premiers entiers

Pour tout $n \in \mathbb{N}$,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Initialisation. Pour n=1, on a $1=1\cdot 2/2$, donc P(1) est vraie. Hérédité. Supposons P(n) vraie, c'est-à-dire

$$1+2+\cdots+n=\frac{n(n+1)}{2}.$$

Alors

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

Donc P(n+1) est vraie. Par récurrence, la formule est vraie pour tout $n \ge 1$.

Exemple. Inégalité de Bernoulli (cas simple)

Soit $a \ge -1$. Pour tout $n \in \mathbb{N}$,

$$(1+a)^n > 1+na$$
.

(on pourra la démontrer par récurrence)

5 Suites définies par récurrence : étude du comportement

5.1 Cas linéaire : $u_{n+1} = au_n + b$

Propriété.

Soit (u_n) définie par u_0 et, pour tout n,

$$u_{n+1} = au_n + b$$

avec $a, b \in \mathbb{R}$ et $a \neq 1$.

Alors la suite (u_n) est de la forme

$$u_n = a^n(u_0 - \ell) + \ell,$$

οù

$$\ell = \frac{b}{1 - a}$$

est la limite candidate (si |a| < 1, alors $u_n \to \ell$).

Exemple.

 $u_0 = 0$ et, pour tout n, $u_{n+1} = \frac{1}{2}u_n + 3$.

On a
$$a = \frac{1}{2}$$
 et $b = 3$, donc $\ell = \frac{3}{1 - 1/2} = 6$.

Par le résultat précédent,

$$u_n = \left(\frac{1}{2}\right)^n (u_0 - 6) + 6 = -6\left(\frac{1}{2}\right)^n + 6.$$

Comme $\left(\frac{1}{2}\right)^n \to 0$, on en déduit que $u_n \to 6$.

5.2 Suites définies par $u_{n+1} = g(u_n)$

Propriété. Stratégie générale

Pour étudier une suite (u_n) définie par

$$u_{n+1} = g(u_n),$$

on suit souvent le schéma :

- 1. Chercher une limite éventuelle ℓ en résolvant $\ell = g(\ell)$.
- 2. Étudier les variations de g sur un intervalle stable contenant les valeurs de la suite.
- 3. Montrer par récurrence que (u_n) reste dans cet intervalle et qu'elle est croissante ou décroissante
- 4. Conclure grâce au théorème de la convergence monotone.

Exemple.

On considère $u_0 = 0$ et

$$u_{n+1} = \frac{u_n + 3}{2}.$$

1. Limite candidate. On cherche ℓ tel que

$$\ell = \frac{\ell+3}{2} \quad \Rightarrow \quad 2\ell = \ell+3 \quad \Rightarrow \quad \ell = 3.$$

- 2. Étude de $g(x) = \frac{x+3}{2}$. C'est une fonction affine, croissante sur \mathbb{R} .
- 3. Encadrement et variations. On montre par récurrence que $0 \le u_n \le 3$ et que (u_n) est croissante. Initialisation : $u_0 = 0$, donc $0 \le u_0 \le 3$.

 $H\acute{e}r\acute{e}dit\acute{e}: \text{supposons } 0 \leq u_n \leq 3. \text{ Alors}$

$$u_{n+1} = \frac{u_n + 3}{2}$$

vérifie $0 \le u_{n+1} \le 3$ et

$$u_{n+1} - u_n = \frac{u_n + 3}{2} - u_n = \frac{3 - u_n}{2} \ge 0,$$

donc $u_{n+1} \geq u_n$.

Ainsi, (u_n) est croissante et majorée par 3, donc convergente, et nécessairement de limite 3.