Fiche de révision

Limites de suites (Terminale spécialité)

1. Définitions et notations

— Une **suite** réelle est une fonction

 $u: \mathbb{N} \longrightarrow \mathbb{R}, \quad n \longmapsto u_n.$

- On note souvent $(u_n)_{n>0}$ ou $(u_n)_{n>1}$.
- Exemples:
 - Suite arithmétique : $u_n = u_0 + nr$.
 - Suite géométrique : $u_n = u_0 q^n$.
 - Suites définies par récurrence : $u_{n+1} = f(u_n)$.

2. Suites majorées, minorées, monotones

Bornes

- (u_n) est **majorée** s'il existe $M \in \mathbb{R}$ tel que $\forall n, u_n \leq M$.
- (u_n) est **minorée** s'il existe $m \in \mathbb{R}$ tel que $\forall n, u_n \geq m$.
- (u_n) est **bornée** si elle est à la fois majorée et minorée.

Monotonie

- (u_n) est **croissante** si $\forall n, u_{n+1} \geq u_n$.
- (u_n) est **décroissante** si $\forall n, u_{n+1} \leq u_n$.

Théorème des suites monotones

- Une suite **croissante** et **majorée** est convergente.
- Une suite décroissante et minorée est convergente.

3. Limites usuelles importantes

- $-\lim_{n\to+\infty}\frac{1}{n}=0.$
- Plus généralement, pour tout réel $\alpha > 0$, $\lim_{n \to +\infty} \frac{1}{n^{\alpha}} = 0$.
- $-\lim_{n\to +\infty} n = +\infty, \quad \lim_{n\to +\infty} n^{\alpha} = +\infty \text{ pour } \alpha > 0.$
- $-\lim_{n\to+\infty} \ln n = +\infty, \text{ mais } \frac{\ln n}{n} \to 0.$

Comparaisons de croissance (ordre de grandeur) :

$$\ln n \ll n^{\alpha} \ll a^n \quad (a > 1, \ \alpha > 0).$$

4. Suites géométriques $(u_n) = u_0 q^n$

— Premier terme u_0 , raison $q \in \mathbb{R}$.

Cas
$$|q| < 1$$

- $|q| < 1 \Rightarrow q^n \to 0.$
- Si $u_n = u_0 q^n$, alors $\lim u_n = 0$.

Cas q=1

- $u_n = u_0$ pour tout n: suite constante.
- $-\lim u_n=u_0.$

Cas q > 1

- $-q^n \to +\infty.$
- Si $u_0 > 0$, alors $u_n \to +\infty$.

Cas
$$q \leq -1$$

— La suite (q^n) n'est pas convergente (oscillations et/ou divergence).

5. Limite d'un quotient de polynômes

Soient P(n) et Q(n) deux polynômes en n de degrés respectifs p et q, avec $Q(n) \neq 0$ pour n assez grand.

- Si p < q, alors $\lim_{n \to +\infty} \frac{P(n)}{Q(n)} = 0$.
- Si p=q, alors $\lim_{n\to+\infty}\frac{P(n)}{Q(n)}=\frac{a_p}{b_q}$, rapport des coefficients dominants.
- Si p > q, alors la limite est infinie (en général $\pm \infty$).

6. Théorème des gendarmes et comparaisons

Théorème des gendarmes

— Si $\forall n, \ u_n \leq v_n \leq w_n$, et si $\lim u_n = \lim w_n = \ell$, alors $\lim v_n = \ell$.

Comparaison de limites

- Si $0 \le u_n \le v_n$ pour tout n et $v_n \to 0$, alors $u_n \to 0$.
- Si $u_n \leq v_n$ et $u_n \to +\infty$, alors $v_n \to +\infty$.

7. Suites définies par récurrence linéaire

On considère une suite définie par :

$$u_{n+1} = au_n + b, \quad a, b \in \mathbb{R}.$$

Cas |a| < 1

— Si (u_n) converge vers une limite ℓ , en passant à la limite dans la relation :

$$\ell = a\ell + b \quad \Rightarrow \quad (1 - a)\ell = b \quad \Rightarrow \quad \ell = \frac{b}{1 - a}.$$

— On pose souvent $v_n = u_n - \ell$, puis

$$v_{n+1} = av_n,$$

ce qui montre que (v_n) est géométrique de raison a et $v_n \to 0$, donc $u_n \to \ell$.

Cas $|a| \ge 1$

— En général, la suite diverge (croissance ou oscillations).