Limites de suites

Exercices corrigés (Terminale spécialité)

Exercice 1 – Quotient de polynômes

Pour tout entier $n \ge 1$, on considère

$$u_n = \frac{3n^2 - 2n + 1}{2n^2 + 5}.$$

- 1. Montrer que la suite (u_n) converge.
- 2. Déterminer $\lim_{n\to+\infty} u_n$.

Afficher / masquer la correction

Exercice 2 – Suite rationnelle et comparaison

Pour tout $n \ge 1$, on définit

$$v_n = \frac{4n+1}{n^2+1}.$$

- 1. Montrer que (v_n) est une suite positive.
- 2. Comparer v_n à $\frac{C}{n}$ pour une constante C convenable.
- 3. Déterminer $\lim_{n\to+\infty} v_n$.

Afficher / masquer la correction

Exercice 3 – Suite géométrique, cas |q| < 1

On considère la suite (u_n) définie par

$$u_n = 5\left(\frac{2}{3}\right)^n.$$

1

- 1. Reconnaître la nature de cette suite.
- 2. Étudier sa limite quand $n \to +\infty$.

Afficher / masquer la correction

Exercice 4 – Théorème des gendarmes

Pour tout entier $n \ge 1$, on considère la suite

$$u_n = \frac{\sin n}{n}.$$

1. Montrer que pour tout $n \ge 1$,

$$-\frac{1}{n} \le u_n \le \frac{1}{n}.$$

2. En déduire la limite de (u_n) .

Afficher / masquer la correction

Exercice 5 – Suite définie par récurrence linéaire

On considère la suite (u_n) définie par

$$u_0 = 0,$$
 $u_{n+1} = \frac{1}{2}u_n + 3.$

- 1. Conjecturer, à l'aide d'une calculatrice ou d'un tableur, le comportement de (u_n) (croissance, borne supérieure apparente, etc.).
- 2. On suppose que (u_n) converge vers une limite ℓ . Montrer que ℓ vérifie une relation du type $\ell = a\ell + b$ et calculer ℓ .
- 3. On pose $v_n = u_n \ell$. Montrer que (v_n) est géométrique et donner v_n en fonction de n.
- 4. En déduire une expression explicite de u_n puis sa limite.

Afficher / masquer la correction

- Numériquement, on obtient approximativement $u_0 = 0$, $u_1 = 3$, $u_2 = 4.5$, $u_3 = 5.25$, $u_4 = 5.625$, etc. La suite semble croissante et se rapprocher de 6.
- Si $u_n \to \ell$, en passant à la limite dans

$$u_{n+1} = \frac{1}{2}u_n + 3,$$

on obtient

$$\ell = \frac{1}{2}\ell + 3 \quad \Rightarrow \quad \frac{1}{2}\ell = 3 \quad \Rightarrow \quad \ell = 6.$$

— On pose $v_n = u_n - 6$. Alors

$$v_{n+1} = u_{n+1} - 6 = \frac{1}{2}u_n + 3 - 6 = \frac{1}{2}u_n - 3 = \frac{1}{2}(u_n - 6) = \frac{1}{2}v_n.$$

Donc (v_n) est une suite géométrique de raison $q = \frac{1}{2}$ et $v_0 = u_0 - 6 = -6$, d'où

$$v_n = -6\left(\frac{1}{2}\right)^n.$$

— Finalement

$$u_n = v_n + 6 = 6 - 6\left(\frac{1}{2}\right)^n$$
.

Comme $\left(\frac{1}{2}\right)^n \to 0$, on retrouve

$$u_n \xrightarrow[n \to +\infty]{} 6.$$

Exercice 6 – Suite monotone et convergence

On considère la suite (u_n) définie par

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 $(n \ge 1)$.

- 1. Montrer (admis : à l'aide d'une étude de fonction) que (u_n) est décroissante à partir d'un certain rang.
- 2. Admettre que (u_n) est minorée.
- 3. En déduire que (u_n) est convergente.

Afficher / masquer la correction