Limites de suites

Spécialité mathématiques – Terminale

1 Rappels sur les suites

Définition.

Une suite réelle est une application

$$u: \mathbb{N} \to \mathbb{R}, \quad n \longmapsto u_n.$$

On note la suite $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) .

Exemple.

- Suite explicite : $u_n = \frac{2n+1}{n+3}$.
- Suite explicite : $v_n = \frac{1}{n}$.
- Suite définie par récurrence :

$$u_0 = 1$$
, $u_{n+1} = \frac{u_n + 3}{2}$.

Dans ce chapitre, on s'intéresse au comportement des suites pour de grands indices n: convergence ou divergence, limites finies ou infinies.

2 Limites finies

Définition.

On dit que la suite (u_n) converge vers un réel ℓ si les termes u_n se rapprochent autant qu'on veut du nombre ℓ quand n devient très grand.

On note alors

$$\lim_{n \to +\infty} u_n = \ell \quad \text{ou} \quad u_n \xrightarrow[n \to +\infty]{} \ell.$$

Remarque.

La définition rigoureuse (admise ici) est la suivante : (u_n) converge vers ℓ si, pour tout $\varepsilon > 0$, il existe un entier N tel que

$$n \ge N \implies |u_n - \ell| < \varepsilon.$$

Exemple.

- La suite $u_n = \frac{1}{n}$ converge vers 0.
- La suite $v_n = \frac{2n+1}{n+3}$ converge vers 2 car

$$\frac{2n+1}{n+3} = 2 - \frac{5}{n+3} \xrightarrow[n \to +\infty]{} 2.$$

Propriété. Unicité de la limite

Si une suite (u_n) converge vers un réel ℓ , alors cette limite est **unique** : il n'existe pas deux réels distincts ℓ_1, ℓ_2 tels que $u_n \to \ell_1$ et $u_n \to \ell_2$.

1

3 Limites infinies

Définition.

On dit que (u_n) diverge vers $+\infty$ si les termes deviennent arbitrairement grands et positifs : pour tout réel A, il existe un entier N tel que

$$n \ge N \implies u_n > A$$
.

On note alors

$$\lim_{n \to +\infty} u_n = +\infty.$$

De même, (u_n) diverge vers $-\infty$ si, pour tout réel B, il existe un entier N tel que

$$n \ge N \implies u_n < B$$
.

On note $\lim_{n\to+\infty} u_n = -\infty$.

Exemple.

- $u_n = n$ ou $u_n = n^2$ vérifient $\lim_{n \to +\infty} u_n = +\infty$.
- $u_n = -n$ vérifie $\lim_{n \to +\infty} u_n = -\infty$.

4 Opérations sur les limites

Propriété. Somme, produit, quotient

Soient (u_n) et (v_n) deux suites convergentes telles que

$$\lim_{n \to +\infty} u_n = \ell, \qquad \lim_{n \to +\infty} v_n = m.$$

Alors:

- Somme:

$$\lim_{n \to +\infty} (u_n + v_n) = \ell + m.$$

— Produit par un réel (pour tout $\lambda \in \mathbb{R}$):

$$\lim_{n \to +\infty} (\lambda u_n) = \lambda \ell.$$

- Produit:

$$\lim_{n \to +\infty} (u_n v_n) = \ell m.$$

— Quotient : si $m \neq 0$ et $v_n \neq 0$ à partir d'un certain rang,

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{\ell}{m}.$$

5 Suites majorées, minorées et théorème des gendarmes

Définition.

- La suite (u_n) est **majorée** s'il existe $M \in \mathbb{R}$ tel que $u_n \leq M$ pour tout n.
- La suite (u_n) est **minorée** s'il existe $m \in \mathbb{R}$ tel que $u_n \geq m$ pour tout n.
- La suite (u_n) est **bornée** si elle est à la fois majorée et minorée.

Propriété. Théorème des gendarmes

Soient (u_n) , (v_n) , (w_n) trois suites telles que, à partir d'un certain rang,

$$u_n \le v_n \le w_n$$
.

 Si

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell,$$

alors

$$\lim_{n \to +\infty} v_n = \ell.$$

Exemple.

Pour tout $n \ge 1$,

$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}.$$

On sait que $\frac{1}{n} \to 0$ et $-\frac{1}{n} \to 0$, donc, par le théorème des gendarmes,

$$\frac{\sin n}{n} \xrightarrow[n \to +\infty]{} 0.$$

6 Suites monotones et convergence

Définition.

On dit que la suite (u_n) est :

- **croissante** si, pour tout $n, u_{n+1} \ge u_n$;
- **décroissante** si, pour tout $n, u_{n+1} \leq u_n$;
- monotone si elle est croissante ou décroissante.

Propriété. Théorème de convergence des suites monotones

- Si (u_n) est **croissante et majorée**, alors elle est convergente.
- Si (u_n) est **décroissante et minorée**, alors elle est convergente.

Remarque.

Si une suite est croissante mais n'est pas majorée, alors elle diverge vers $+\infty$. De même, une suite décroissante non minorée diverge vers $-\infty$.

7 Quelques limites usuelles

Propriété. Suites de référence

Pour tout entier $k \geq 1$:

$$-\lim_{n\to+\infty}\frac{1}{n^k}=0.$$

$$-\lim_{n\to +\infty} n^k = +\infty.$$

Si |q| < 1, alors

$$\lim_{n \to +\infty} q^n = 0.$$

Si a > 1, alors

$$\lim_{n \to +\infty} a^n = +\infty.$$

Si $u_n = \frac{P(n)}{Q(n)}$ où P et Q sont des polynômes de même degré, alors

$$\lim_{n \to +\infty} u_n = \frac{\text{coefficient dominant de } P}{\text{coefficient dominant de } Q}$$

Exemple.

—
$$u_n = \frac{3n^2 + 1}{2n^2 - n + 5}$$
 vérifie

$$\lim_{n \to +\infty} u_n = \frac{3}{2}.$$

— Si |q| < 1, la suite géométrique $u_n = q^n$ converge vers 0.

8 Suites linéaires : $u_{n+1} = au_n + b$

Définition.

On considère la suite définie par

$$u_{n+1} = au_n + b$$
, $a, b \in \mathbb{R}$, $a \neq 1$.

Propriété.

Supposons que la suite (u_n) converge vers une limite ℓ . Alors ℓ satisfait

$$\ell = a\ell + b \quad \Rightarrow \quad \ell = \frac{b}{1 - a}.$$

On pose ensuite $v_n = u_n - \ell$. Alors

$$v_{n+1} = av_n,$$

donc (v_n) est une suite géométrique de raison a:

$$v_n = v_0 a^n$$
.

On en déduit l'expression de u_n :

$$u_n = a^n(u_0 - \ell) + \ell.$$

Si |a| < 1, on a $a^n \to 0$, donc

$$u_n \xrightarrow[n \to +\infty]{} \ell = \frac{b}{1-a}.$$

Exemple.

Soit la suite définie par

$$u_{n+1} = \frac{1}{2}u_n + 3, \quad u_0 = 0.$$

On a $a = \frac{1}{2}$, b = 3, donc

$$\ell = \frac{b}{1-a} = \frac{3}{1-\frac{1}{2}} = 6.$$

En posant $v_n = u_n - 6$, on obtient

$$v_{n+1} = \frac{1}{2}v_n, \quad v_0 = -6,$$

donc

$$v_n = -6\left(\frac{1}{2}\right)^n$$
 et $u_n = 6 - 6\left(\frac{1}{2}\right)^n \xrightarrow[n \to +\infty]{} 6.$