Fiche d'exercices

Dérivation, convexité et continuité

Terminale Spécialité

Partie A — Exercices

Exercice 1 — Continuité et dérivabilité en un point

On considère la fonction

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{si } x \neq 1, \\ 2 & \text{si } x = 1. \end{cases}$$

- 1. Simplifier l'expression de f(x) pour $x \neq 1$.
- 2. Étudier la limite de f(x) lorsque $x \to 1$.
- 3. La fonction f est-elle continue en 1?
- 4. Calculer, si elle existe, la dérivée f'(1) à l'aide de la définition

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}.$$

5. Donner l'équation de la tangente à la courbe de f au point d'abscisse 1 si elle existe.

Exercice 2 — Étude de fonctions, variations et extremums

On considère la fonction

$$f(x) = (x^2 - 3x + 1)e^x$$

définie sur \mathbb{R} .

- 1. Justifier que f est dérivable sur \mathbb{R} et calculer f'(x).
- 2. Mettre f'(x) sous la forme $f'(x) = (2x 3 + x^2 3x + 1)e^x$ puis factoriser au maximum.
- 3. Étudier le signe de f'(x).
- 4. En déduire les variations de f sur \mathbb{R} et dresser le tableau de variations.
- 5. Déterminer les extremums éventuels de f (valeurs et abscisses).

Exercice 3 — Convexité et dérivée seconde

On considère la fonction définie sur \mathbb{R} par

$$f(x) = \ln(x^2 + 1) - x^2.$$

- 1. Justifier que f est dérivable, puis calculer f'(x).
- 2. Montrer que

$$f'(x) = \frac{2x}{x^2 + 1} - 2x.$$

Étudier le signe de f'(x) sur \mathbb{R} et en déduire les variations de f.

- 3. Calculer la dérivée seconde f''(x).
- 4. Étudier le signe de f''(x) et en déduire les intervalles de convexité / concavité de f.
- 5. Déterminer s'il existe un point d'inflexion et, le cas échéant, en donner les coordonnées.

Exercice 4 — Convexité et inégalités

On considère la fonction g définie sur $(0, +\infty)$ par

$$g(x) = x + \ln(1+x) - \frac{x^2}{2}.$$

- 1. Déterminer g'(x) puis g''(x).
- 2. Étudier le signe de g''(x) et en déduire la convexité ou concavité de g sur $(0, +\infty)$.
- 3. Montrer que g(0) = 0 (par prolongement par continuité) et que g'(0) = 2.
- 4. En étudiant les variations de g, déterminer l'intervalle sur lequel on a $g(x) \ge 0$.
- 5. En déduire pour quels x > 0 l'inégalité

$$\ln(1+x) \ge \frac{x^2}{2} - x$$

est vérifiée.

Exercice 5 — Inégalité classique avec la convexité de l'exponentielle

On considère la fonction $h(x) = e^x - 1 - x$ définie sur \mathbb{R} .

- 1. Calculer h'(x) puis h''(x).
- 2. Étudier le signe de h''(x) et en déduire la convexité de h.
- 3. Calculer h(0) et h'(0).
- 4. En utilisant la convexité de h et le fait que la tangente en 0 a pour équation y=0, montrer que pour tout $x \in \mathbb{R}$,

$$e^x > 1 + x$$
.

Exercice 6 — Sujet type bac, continuité, variations et équation

On considère la fonction f définie sur $\mathbb R$ par

$$f(x) = x^3 - 3x + 1.$$

- 1. Justifier que f est dérivable sur \mathbb{R} et calculer f'(x).
- 2. Étudier le signe de f'(x) et dresser le tableau de variations de f.
- 3. Discuter le nombre de solutions de l'équation f(x) = 0 dans [0, 2]. On notera α la solution appartenant à [0, 1].
- 4. À l'aide du tableau de variations, donner un encadrement de α d'amplitude 10^{-1} .
- 5. Calculer f''(x). La courbe de f possède-t-elle des points d'inflexion? Justifier.

Exercice 7 — Étude complète d'une fonction avec exponentielle

On considère la fonction f définie sur $[0, +\infty[$ par

$$f(x) = x^2 e^{-x}.$$

- 1. Justifier que f est continue et dérivable sur $[0, +\infty[$ et calculer f'(x).
- 2. Montrer que, pour tout $x \geq 0$,

$$f'(x) = e^{-x}x(2-x).$$

- 3. Étudier le signe de f'(x) et en déduire le tableau de variations de f sur $[0, +\infty[$.
- 4. Déterminer les extremums de f sur $[0, +\infty[$ (abscisses et valeurs).
- 5. Calculer f''(x), montrer que

$$f''(x) = e^{-x}(x^2 - 4x + 2),$$

puis étudier le signe de f''(x) et en déduire les intervalles de convexité / concavité de f ainsi que les éventuels points d'inflexion.

Exercice 8 — Continuité de fonctions définies par morceaux

1. Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x^2 - 1 & \text{si } x < 0, \\ x - 1 & \text{si } x \ge 0. \end{cases}$$

La fonction f est-elle continue sur \mathbb{R} ? Est-elle dérivable sur \mathbb{R} ?

2. Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si } x \neq 2, \\ 3 & \text{si } x = 2. \end{cases}$$

Étudier la continuité de f sur \mathbb{R} .

3. Quelle valeur de a faut-il choisir pour que la fonction définie par :

$$f(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{x} & \text{si } x \in [-1, 0[\ \cup\]0, +\infty[, \\ a & \text{si } x = 0, \end{cases}$$

soit continue en 0?

Exercice 9 — Type bac : exponentielle et points d'inflexion

Exercice 2 (7 points)

Thème: fonctions, fonction exponentielle

Partie A

Soit p la fonction définie sur l'intervalle [-3; 4] par :

$$p(x) = x^3 - 3x^2 + 5x + 1.$$

- 1. Déterminer les variations de la fonction p sur l'intervalle $[-3\ ;\ 4].$
- 2. Justifier que l'équation p(x) = 0 admet dans l'intervalle [-3; 4] une unique solution qui sera notée α .
- 3. Déterminer une valeur approchée du réel α au dixième près.
- 4. Donner le tableau de signes de la fonction p sur l'intervalle [-3; 4].

Partie B

Soit f la fonction définie sur l'intervalle [-3; 4] par :

$$f(x) = \frac{e^x}{1 + x^2}.$$

On note C_f sa courbe représentative dans un repère orthogonal.

- 1. (a) Déterminer la dérivée de la fonction f sur l'intervalle [-3; 4].
 - (b) Justifier que la courbe C_f admet une tangente horizontale au point d'abscisse 1.
- 2. Les concepteurs d'un toboggan utilisent la courbe C_f comme profil d'un toboggan. Ils estiment que le toboggan assure de bonnes sensations si le profil possède au moins deux points d'inflexion.
 - (a) D'après le graphique ci-dessus, le toboggan semble-t-il assurer de bonnes sensations? Argumenter.
 - (b) On admet que la fonction f'', dérivée seconde de la fonction f, a pour expression pour tout réel x de l'intervalle [-3; 4]:

$$f''(x) = \frac{p(x)(x-1)e^x}{(1+x^2)^3},$$

où p est la fonction définie dans la partie A.

En utilisant cette expression de f'', répondre à la question : « le toboggan assure-t-il de bonnes sensations ? ». Justifier.

3

Partie B — Corrigés (détaillés)

Exercice 1

Correction.

Pour $x \neq 1$:

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1.$$

Donc pour $x \neq 1$, f(x) = x + 1.

Limite en 1:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x+1) = 2.$$

Continuité en 1 : on a f(1) = 2 par définition, et la limite en 1 vaut 2, donc f est continue en 1. Dérivabilité en 1 :

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h) + 1 - 2}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

Tangente en 1 : coefficient directeur f'(1) = 1, point A(1,2). Équation :

$$y = f'(1)(x-1) + f(1) = 1(x-1) + 2 = x + 1.$$

La tangente est confondue avec la droite y = x + 1, ce qui est logique puisque pour $x \neq 1$, f(x) = x + 1.

Exercice 2

Correction.

f est produit d'un polynôme et de e^x , donc dérivable sur \mathbb{R} . On pose $u(x) = x^2 - 3x + 1$. Alors $f(x) = u(x)e^x$.

$$f'(x) = u'(x)e^x + u(x)e^x = (2x - 3)e^x + (x^2 - 3x + 1)e^x = e^x(x^2 - x - 2).$$

On factorise:

$$x^2 - x - 2 = (x - 2)(x + 1),$$

donc

$$f'(x) = e^x(x-2)(x+1).$$

Comme $e^x > 0$ pour tout x, le signe de f'(x) est celui de (x-2)(x+1).

Tableau de signe:

Donc:

- f croissante sur $(-\infty, -1]$,
- décroissante sur [-1, 2],
- croissante sur $[2, +\infty)$.

On calcule:

$$f(-1) = ((-1)^2 + 3 + 1)e^{-1} = 5e^{-1},$$
 $f(2) = (4 - 6 + 1)e^2 = -e^2.$

Ainsi:

- f admet un **maximum local** en -1: f(-1) = 5/e,
- un minimum local en $2: f(2) = -e^2$.

Exercice 3

Correction.

On a

$$f(x) = \ln(x^2 + 1) - x^2.$$

Pour tout $x \in \mathbb{R}$, $x^2 + 1 > 0$, donc $\ln(x^2 + 1)$ est définie et dérivable. La différence de deux fonctions dérivables est dérivable : f est dérivable sur \mathbb{R} .

1) Dérivée.

$$f'(x) = \frac{2x}{x^2 + 1} - 2x.$$

2) Signe de f'(x) et variations.

On met au même dénominateur :

$$f'(x) = \frac{2x}{x^2 + 1} - 2x = \frac{2x - 2x(x^2 + 1)}{x^2 + 1} = \frac{2x - 2x^3 - 2x}{x^2 + 1} = \frac{-2x^3}{x^2 + 1}.$$

Le dénominateur est toujours > 0 et $-2x^3$ a le signe opposé à celui de x^3 .

Ainsi:

$$f'(x) > 0$$
 si $x < 0$, $f'(x) < 0$ si $x > 0$, $f'(0) = 0$.

Donc f est

- croissante sur $(-\infty, 0]$,
- décroissante sur $[0, +\infty)$,

et admet un **maximum** en x = 0 de valeur

$$f(0) = \ln(1) - 0 = 0.$$

3) Dérivée seconde.

On dérive encore :

$$f''(x) = \left(\frac{2x}{x^2 + 1}\right)' - 2.$$

En utilisant la dérivée d'un quotient :

$$\left(\frac{2x}{x^2+1}\right)' = \frac{2(x^2+1) - (2x) \cdot 2x}{(x^2+1)^2} = \frac{2x^2+2-4x^2}{(x^2+1)^2} = \frac{2-2x^2}{(x^2+1)^2}.$$

Donc

$$f''(x) = \frac{2 - 2x^2}{(x^2 + 1)^2} - 2 = \frac{2 - 2x^2 - 2(x^2 + 1)^2}{(x^2 + 1)^2}.$$

Après simplification, on obtient une forme plus simple :

$$f''(x) = \frac{-2x^2(x^2+3)}{(x^2+1)^2}.$$

4) Signe de f''(x) et convexité.

Le dénominateur $(x^2+1)^2$ est toujours > 0. Le numérateur $-2x^2(x^2+3)$ est ≤ 0 pour tout x, car $x^2 \ge 0$ et $x^2+3>0$.

Ainsi:

$$f''(x) \le 0$$
 pour tout x , $f''(x) = 0 \iff x = 0$.

Donc la fonction f est **concave sur toute** \mathbb{R} .

5) Point d'inflexion.

Un point d'inflexion nécessite un changement de signe de f''. Or $f''(x) \leq 0$ pour tout x, il n'y a pas de changement de signe (même si f''(0) = 0).

Conclusion : il n'y a pas de point d'inflexion pour la fonction f.

Exercice 4

Correction.

On considère

$$g(x) = x + \ln(1+x) - \frac{x^2}{2}, \qquad x > 0.$$

1) Dérivées.

$$g'(x) = 1 + \frac{1}{1+x} - x,$$
 $g''(x) = -\frac{1}{(1+x)^2} - 1.$

2) Concavité.

Pour tout x > 0,

$$g''(x) = -\frac{1}{(1+x)^2} - 1 < 0.$$

Donc g est **concave** sur $(0, +\infty)$.

3) Valeurs en 0.

On prolonge g par continuité en 0:

$$g(0) = 0 + \ln(1) - 0 = 0.$$

Et

$$g'(0) = 1 + \frac{1}{1+0} - 0 = 2.$$

4) Étude des variations et signe de g.

On résout g'(x) = 0:

$$1 + \frac{1}{1+x} - x = 0 \iff (1+x) + 1 - x(1+x) = 0 \iff x^2 - 2x - 1 = 0.$$

Les solutions sont $x = 1 \pm \sqrt{2}$. Sur $(0, +\infty)$, le seul point critique est

$$x_1 = 1 + \sqrt{2} \approx 2.41.$$

Comme g''(x) < 0, g a un **maximum** en x_1 . On a :

$$g(0) = 0,$$
 $g(x_1) > 0,$ $\lim_{x \to +\infty} g(x) = -\infty$

(car le terme $-x^2/2$ domine).

Donc il existe un unique réel $\alpha > 0$ tel que $g(\alpha) = 0$ avec $\alpha > x_1$. On trouve numériquement $\alpha \approx 2,93$. Ainsi :

$$g(x) \ge 0$$
 pour $0 \le x \le \alpha$, $g(x) < 0$ pour $x > \alpha$.

5) Inégalité sur ln(1+x).

On a, pour tout x > 0,

$$g(x) = x + \ln(1+x) - \frac{x^2}{2} \ge 0 \iff \ln(1+x) \ge \frac{x^2}{2} - x,$$

mais cette inégalité n'est vraie que pour

$$0 < x < \alpha \approx 2.93$$
.

Conclusion:

Exercice 5

Correction.

$$h(x) = e^x - 1 - x.$$

1) Dérivées.

$$h'(x) = e^x - 1, \qquad h''(x) = e^x.$$

2) Convexité.

Pour tout $x \in \mathbb{R}$, $h''(x) = e^x > 0$, donc h est **convexe** sur \mathbb{R} .

3) Valeurs en 0.

$$h(0) = e^{0} - 1 - 0 = 0,$$
 $h'(0) = e^{0} - 1 = 0.$

4) Inégalité.

Pour une fonction convexe, le graphe est au-dessus de toutes ses tangentes. La tangente en 0 a pour équation :

$$y = h(0) + h'(0)x = 0.$$

Ainsi, pour tout $x \in \mathbb{R}$,

$$h(x) \ge 0 \iff e^x - 1 - x \ge 0 \iff e^x \ge 1 + x.$$

On obtient l'inégalité classique

$$e^x \ge 1 + x$$
 pour tout $x \in \mathbb{R}$.

Exercice 6

Correction.

$$f(x) = x^3 - 3x + 1.$$

Polynôme, donc dérivable sur \mathbb{R} .

1) Dérivée.

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1).$$

- 2) Signe de f'(x) et variations.
 - -f'(x) > 0 si x < -1 ou x > 1,
 - -f'(x) < 0 si -1 < x < 1,
 - -f'(-1) = f'(1) = 0.

Donc f est :

- croissante sur $(-\infty, -1]$,
- décroissante sur [-1,1],
- croissante sur $[1, +\infty)$.

Valeurs aux points particuliers:

$$f(-1) = -1 + 3 + 1 = 3$$
, $f(1) = 1 - 3 + 1 = -1$.

3) Solutions de f(x) = 0 dans [0, 2].

On étudie le signe de f:

$$f(0) = 1 > 0$$
, $f(1) = -1 < 0$, $f(2) = 8 - 6 + 1 = 3 > 0$.

Par le théorème des valeurs intermédiaires :

- Comme f(0) > 0 et f(1) < 0, il existe une solution $\alpha \in (0,1)$.
- Comme f(1) < 0 et f(2) > 0, il existe une autre solution $\beta \in (1, 2)$.

Remarque : l'énoncé parlant d'«une unique solution dans [0,2]» n'est pas exact : en réalité, il y a **deux** solutions dans cet intervalle, une dans (0,1) et une dans (1,2). On note α la solution dans [0,1].

4) Encadrement de α d'amplitude 10^{-1} .

On cherche un encadrement dans [0,1]. On calcule :

$$f(0,3) = 0.3^3 - 3 \cdot 0.3 + 1 = 0.027 - 0.9 + 1 = 0.127 > 0$$

$$f(0,4) = 0,4^3 - 3 \cdot 0,4 + 1 = 0,064 - 1,2 + 1 = -0,136 < 0.$$

Donc $\alpha \in (0,3,0,4).$ On a ainsi un encadrement de longueur 0,1 :

$$0.3 < \alpha < 0.4.$$

5) Dérivée seconde et point d'inflexion.

$$f''(x) = (3x^2 - 3)' = 6x.$$

On a:

$$f''(x) < 0 \text{ si } x < 0,$$
 $f''(0) = 0,$ $f''(x) > 0 \text{ si } x > 0.$

La concavité change de signe en x = 0, donc la courbe admet un **point d'inflexion** à l'abscisse 0. On a f(0) = 1, donc le point d'inflexion est

$$I(0,1)$$
.

Exercice 7

Correction.

On considère

$$f(x) = x^2 e^{-x}, \qquad x \ge 0.$$

1) Continuité, dérivabilité et dérivée.

 x^2 est un polynôme, e^{-x} est dérivable sur \mathbb{R} , donc leur produit est dérivable (et donc continu) sur $[0, +\infty[$. En dérivant :

$$f'(x) = (x^2)'e^{-x} + x^2(e^{-x})' = 2xe^{-x} + x^2(-e^{-x}) = e^{-x}(2x - x^2).$$

2) Mise sous forme factorisée.

Pour tout $x \ge 0$,

$$2x - x^2 = x(2 - x),$$

d'où

$$f'(x) = e^{-x}x(2-x).$$

3) Signe de f'(x) et variations.

Sur $[0, +\infty[$, $e^{-x} > 0$. Le signe de f'(x) est donc celui de x(2-x).

— Si
$$0 < x < 2$$
, alors $x > 0$ et $2 - x > 0$: $f'(x) > 0$.

— Si
$$x > 2$$
, alors $x > 0$ et $2 - x < 0$: $f'(x) < 0$.

$$-f'(0) = 0, f'(2) = 0.$$

Ainsi, f est

- croissante sur [0, 2],
- décroissante sur $[2, +\infty[$.

$$f(0) = 0,$$
 $f(2) = 4e^{-2}.$

4) Extremums.

- En x=0, f passe de «non définie à gauche» à croissante avec f(0)=0 : c'est un **minimum global** sur $[0,+\infty[$.
- En x=2, f passe de croissante à décroissante : c'est un **maximum global** sur $[0,+\infty[$, de valeur $4e^{-2}$.

5) Dérivée seconde, convexité et points d'inflexion.

On dérive encore :

$$f''(x) = (e^{-x}x(2-x))' = e^{-x}x(2-x)' + (e^{-x})'x(2-x) = e^{-x}(2-2x) - e^{-x}x(2-x).$$

Après simplification, on obtient :

$$f''(x) = e^{-x}(x^2 - 4x + 2).$$

Comme $e^{-x} > 0$, le signe de f''(x) est celui du trinôme

$$x^2 - 4x + 2$$

Son discriminant vaut $\Delta = 16 - 8 = 8 > 0$ et ses racines sont

$$x_{1,2} = 2 \pm \sqrt{2}$$
.

Donc:

- f''(x) > 0 pour $x < 2 \sqrt{2}$ ou $x > 2 + \sqrt{2}$,
- f''(x) < 0 pour $2 \sqrt{2} < x < 2 + \sqrt{2}$.

En tenant compte de $x \ge 0$:

- f est convexe sur $[0, 2-\sqrt{2}[$ et sur $]2+\sqrt{2}, +\infty[$,
- f est **concave** sur $]2 \sqrt{2}, 2 + \sqrt{2}[.$

Comme le signe de f'' change en $x_1 = 2 - \sqrt{2}$ et en $x_2 = 2 + \sqrt{2}$, il y a deux **points d'inflexion**:

$$I_1(2-\sqrt{2}, (2-\sqrt{2})^2 e^{-(2-\sqrt{2})}), \qquad I_2(2+\sqrt{2}, (2+\sqrt{2})^2 e^{-(2+\sqrt{2})}).$$

Exercice 8

Correction.

1) Continuité et dérivabilité de

$$f(x) = \begin{cases} x^2 - 1 & \text{si } x < 0, \\ x - 1 & \text{si } x \ge 0. \end{cases}$$

Pour x < 0, $f(x) = x^2 - 1$: polynôme, donc continue et dérivable. Pour x > 0, f(x) = x - 1: polynôme, donc continue et dérivable.

Le point délicat est x = 0.

Continuité en 0.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2} - 1) = -1, \qquad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x - 1) = -1,$$

et f(0) = 0 - 1 = -1. Les trois coïncident, donc f est continue en 0.

Dérivabilité en θ . Pour x < 0, f'(x) = 2x donc $f'(0^-) = 0$. Pour x > 0, f'(x) = 1 donc $f'(0^+) = 1$. Les dérivées à gauche et à droite sont différentes : f n'est pas dérivable en θ .

Conclusion : f est continue sur \mathbb{R} , dérivable sur $\mathbb{R} \setminus \{0\}$, mais pas dérivable en 0.

2) Continuité de

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si } x \neq 2, \\ 3 & \text{si } x = 2. \end{cases}$$

Pour $x \neq 2$, on factorise :

$$x^{2} - x - 2 = (x - 2)(x + 1)$$
 \Rightarrow $f(x) = \frac{(x - 2)(x + 1)}{x - 2} = x + 1.$

Donc f(x) = x + 1 pour $x \neq 2$, fonction polynomiale continue sur $\mathbb{R} \setminus \{2\}$. En x = 2.

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x+1) = 3, \qquad f(2) = 3.$$

La limite en 2 est égale à la valeur de la fonction : f est continue en 2.

Conclusion : f est continue sur \mathbb{R} .

3) Choix de a pour la continuité en 0.

On considère

$$f(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{x} & \text{si } x \in [-1, 0[\cup]0, +\infty[, \\ a & \text{si } x = 0. \end{cases}$$

La fonction sera continue en 0 si

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = a.$$

On rationalise:

$$\frac{\sqrt{1+x}-1}{x} = \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \frac{1+x-1}{x(\sqrt{1+x}+1)} = \frac{x}{x(\sqrt{1+x}+1)} = \frac{1}{\sqrt{1+x}+1}.$$

Donc

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1} = \frac{1}{\sqrt{1+0} + 1} = \frac{1}{2}.$$

Il faut donc choisir

$$a = \frac{1}{2}$$

pour que la fonction soit continue en 0.

Exercice 9

Correction.

Partie A

1. La fonction p est un polynôme, donc continue et dérivable sur [-3; 4].

$$p(x) = x^3 - 3x^2 + 5x + 1,$$
 $p'(x) = 3x^2 - 6x + 5.$

On étudie le signe de p'(x). C'est un trinôme de discriminant

$$\Delta = (-6)^2 - 4 \cdot 3 \cdot 5 = 36 - 60 = -24 < 0,$$

et le coefficient directeur est positif (3 > 0).

Donc p'(x) > 0 pour tout $x \in \mathbb{R}$ et, en particulier, sur [-3;4]. La fonction p est donc **strictement croissante** sur [-3;4].

2. On calcule les valeurs aux bornes :

$$p(-3) = (-3)^3 - 3(-3)^2 + 5(-3) + 1 = -27 - 27 - 15 + 1 = -68,$$

$$p(4) = 4^3 - 3 \cdot 4^2 + 5 \cdot 4 + 1 = 64 - 48 + 20 + 1 = 37.$$

Comme p est continue et strictement croissante sur [-3; 4], elle réalise une bijection de [-3; 4] sur [-68; 37]. Or $0 \in [-68; 37]$.

Par le corollaire du théorème des valeurs intermédiaires, l'équation p(x) = 0 admet donc une **unique** solution α dans [-3, 4].

3. On cherche α au dixième près. Par exemple, à la calculatrice, on trouve

$$\alpha \approx -0.2$$
.

On peut justifier rapidement : $p(-0.3) \approx -1.5 < 0$ et $p(-0.1) \approx 0.5 > 0$, donc $\alpha \in (-0.3; -0.1)$, ce qui est cohérent avec $\alpha \approx -0.2$.

4. Comme p est strictement croissante, elle est négative avant la racine et positive après. Avec $\alpha \approx -0.2$, on obtient le tableau de signes :

Donc p(x) < 0 sur $[-3; \alpha[$ et p(x) > 0 sur $]\alpha; 4]$.

Partie B

1. (a) La fonction f est quotient de fonctions dérivables avec dénominateur jamais nul sur [-3;4] $(1+x^2>0)$, donc elle est dérivable.

$$f(x) = \frac{e^x}{1 + x^2}.$$

En utilisant la formule du quotient :

$$f'(x) = \frac{e^x(1+x^2) - e^x \cdot 2x}{(1+x^2)^2} = \frac{e^x(1+x^2-2x)}{(1+x^2)^2} = \frac{e^x(x^2-2x+1)}{(1+x^2)^2} = \frac{e^x(x-1)^2}{(1+x^2)^2}.$$

(b) Pour une tangente horizontale il faut $f'(x_0) = 0$. Le dénominateur $(1 + x^2)^2$ est toujours > 0 et $e^x > 0$, donc

$$f'(x) = 0 \iff (x-1)^2 = 0 \iff x = 1.$$

On a alors

$$f(1) = \frac{e^1}{1+1^2} = \frac{e}{2}.$$

Donc \mathcal{C}_f admet au point d'abscisse 1 une tangente horizontale d'équation

$$y = \frac{\mathrm{e}}{2}$$
.

- 2. (a) D'après le graphique, on observe que le profil :
 - est **convexe** sur une première partie (à gauche),
 - puis concave sur une zone intermédiaire,

— puis de nouveau **convexe** sur la partie droite.

La courbe semble donc avoir deux changements de convexité, donc deux points d'inflexion environ aux abscisses $x \approx 0$ et $x \approx 1$. Le toboggan semble donc assurer de bonnes sensations.

(b) On admet que, pour tout $x \in [-3, 4]$,

$$f''(x) = \frac{p(x)(x-1)e^x}{(1+x^2)^3},$$

où p est la fonction de la partie A.

Pour les signes, on remarque :

$$(1+x^2)^3 > 0$$
 et $e^x > 0$ pour tout x .

Le signe de f''(x) est donc celui de p(x)(x-1).

D'après la partie A, p(x) < 0 sur $[-3; \alpha[$, $p(\alpha) = 0$ et p(x) > 0 sur $[\alpha; 4]$, avec $\alpha \approx -0.2$.

On construit alors le tableau de signe détaillé :

On peut résumer le tableau de signe de f'' seul ainsi :

On en déduit :

- Pour $-3 < x < \alpha$, f''(x) > 0: f est convexe.
- Pour $\alpha < x < 1$, f''(x) < 0: f est concave.
- Pour 1 < x < 4, f''(x) > 0: f est à nouveau **convexe**.

Il y a donc un changement de convexité en $x=\alpha$ (de convexe à concave) puis en x=1 (de concave à convexe).

Ainsi, C_f admet **deux points d'inflexion**, d'abscisses α et 1. Le toboggan possède donc bien au moins deux points d'inflexion : il **assure de bonnes sensations**.